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Abstract

Compensatory growth in response to exercise is an important adaptation mechanism of
skeletal muscles, as they become in this way able to move heavier mechanical loads. The
increase of muscle mass is primarily the result of the increase of muscle fibre size (fibre
hypertrophy). Whether increase of fibre number (hyperplasia) also contributes to compen-
satory growth is still matter of debate. This short review aims to analyse some data in fa-
vour or against this possibility.
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Compensatory growth in response to exercise is an
important adaptation mechanism of skeletal muscles, as
they become in this way able to move heavier mechani-
cal loads. The increase of muscle mass is primarily the
result of the increase of muscle fibre size (fibre hyper-
trophy). Whether increase of fibre number (hyperplasia)
also contributes to compensatory growth is still matter
of debate. This short review aims to analyse some data
in favour or against this possibility.

Early work [23, 28] led to the hypothesis that from a
fixed number of muscle fibres at birth, postnatal varia-
tion in muscle mass was only due to increase or de-
crease of individual fibre volume. Proliferation proc-
esses in muscle would be therefore restricted to early
development and to regeneration.

Muscle development is characterized by asynchronous
differentiation of two, or possibly three in humans [8],
muscle fibre population (for a comprehensive review
[18]). Primary myoblasts undergo repeated cycles of
duplication and then leave the proliferative cycle and
begin to fuse into myotubes which after innervation dif-
ferentiate to first generation muscle fibres. Remaining
myoblasts continue proliferative activity and later un-
dergo fusion to myotubes from which secondary muscle
fibres derive. After the second fusion wave a final group
of myoblast remains. These latter cells can remain silent
for a long time at their location under the basal mem-
brane of adult muscle fibres. These silent myoblasts are
generally referred to as satellite cells [26]. They repre-
sent the myogenic proliferative potential of muscle tis-
sue. When activated by suitable stimuli they can resume
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proliferation, generate new myotubes and fuse with pre-
existing fibres or produce new muscle fibres. Recent
studies [9] have, moreover, provided evidence that sat-
ellite cell are not the sole source of myogenic prolifera-
tive potential, other cells as for example of bone marrow
can be recruited for muscle repair in the case of injury.

In the carp which like other fishes increases its body
size all life long myoblasts-satellite cells contribute to
adult muscle growth. The increase of fibre thickness
alone can not account for the increase of total muscle
mass. Moreover a decrease occurs in the proportion of
nuclei belonging to the satellite cells over the total
number of nuclei of the muscle tissue, suggesting a gen-
eration of new fibres using the pre-existing satellite cells
[21]. Analysis of the distribution of fibre thickness
shows that a population of thin fibres remains even at
late stage of growth, confirming that the process of for-
mation of new fibre does not stop [21].

In mammals and in humans satellite cells remain mi-
totically quiescent until the muscle is damaged or, pos-
sibly, until hypertrophying stimuli are applied. A com-
plete regeneration of muscle mechanically or chemically
injured or even minced, can occur starting from the pool
of satellite cells [3, 4, 33]. Activation occurs within sev-
eral hours after the injury as demonstrated by the ex-
pression of MyoD and myogenin in these cells [17]. The
activation appears to be mediated by growth factors
which might be released by the injured fibre or might
get in contact with the satellite cell following the lesion
of the basal membrane [2, 7]. FGF m RNA is detected
in activated but not in quiescent satellite cells, as is IGF
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mRNA. This also suggests that growth factors might
play a regulatory role during satellite cell replication,
possibly through an autocrine mechanism (see for a re-
view [35]).

Activation of satellite cells during hypertrophic mus-
cle growth might explain why DNA content of muscle,
and not only protein content, increases. Upon activation
satellite cells proliferate and either fuse with pre-
existing muscle fibres, thus increasing the myonuclei
number without changing the fibre number or fuse to-
gether producing new fibres. In this latter case the total
number of fibre should increase and the increase should
be detectable by fibre counting.

In an attempt to understand whether training can result
in satellite cell activation the total number of muscle fi-
bre in human muscle post mortem have been counted.
This investigation has shown a pronounced interindi-
vidual variability but no significant differences between
trained and untrained individuals [22, 27, 30, 36].

Several experimental studies on animals point to the
contribution of hyperplasia in muscle growth. Three
main protocols have been used to induce muscle hyper-
trophy: exercise-induced hypertrophy, stretch-induced
hypertrophy and compensatory hypertrophy (following
tenotomy of agonist muscles). A number of studies have
described an increase of muscle fibres in these models
of muscle hypertrophy [14, 15, 16, 31]. The validity of
fibre counting has been questioned by other studies
where fibre counting at one muscle cross section was
replaced by total fibre counting of a muscle. Counting
of virtually all fibres in the muscles in experiments of
unilateral load application in rats [13] and in chicken
[12] brought evidence in favour to the conclusion that
there was no difference between hypertrophic trained
and untrained control muscles. The conflicting results
can be explained not only in relation to the methodology
employed in fibre counting but also in relation to ex-
perimental protocol utilized to stimulate muscle growth.
It seems, therefore, difficult to come to a final conclu-
sion about the contribution of hyperplasia to increase of
fibre mass from experiments based on hypertrophy in-
duction and fibre counting in animals.

More direct evidence in favour of the involvement of
satellite cell activation in muscle mass growth has come
from the work by Parry and coworkers [29], who
showed that muscle irradiation which destroys the sat-
ellite cell population, reduces dramatically the ability of
muscles to respond to hypertrophying stimuli like exer-
cise or tenotomy.

Further evidence in favour of the responsiveness of
satellite cells to mechanical load on muscle has been
provided by radio-labelled thymidine or BrdU incorpo-
ration experiments. After a single bout of prolonged
downhill treadmill running the number of satellite cells
that entered the S phase was far greater than required to
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repair a small number of damaged necraotic fibres [6]. In
young developing rats hindlimb unloading causes in 3-5
days a virtually complete inhibition of satellite cell pro-
liferative activity [34].

Activation of satellite cells in humans has been ob-
served after 6 week of endurance training [1]. One could
expect, however, that the contribution of satellite cells
to muscle growth would be more important in resistance
training where muscle mass growth is greater. No data
seems available on this.

These studies prompt to investigate the factors which
can regulate satellite cell activation, to ascertain whether
only muscle damage or also muscle overload can repre-
sent a trigger for satellite cells. As mentioned above
[35] local release of FGF and IGF-1 has been demon-
strated during regeneration. There are indications that
the same growth factors are released also in relation to
an increase of mechanical load on muscle [11].

A recent important contribution to the understanding
of the mechanism which regulate the number of muscle
fibres has been given by the identification of myostatin
also called GDF8. Myostatin is a member of trans-
forming growth factor TGF superfamily
and is expressed specifically in skeletal muscle fibres
[19, 24]. Mutations in the bovine myostatin genes pro-
duce a phenotype called “double muscled” because of
the increase of muscle size [20, 25]. Knock out of the
myostatin gene in the mouse produce a dramatic in-
crease of muscle mass due for a large part to the in-
crease of fibre number accompanied by modest changes
in fibre thickness [24]. Myostatin seems to act as a
negative regulator of muscle mass growth. Its action is
mostly restricted to the period of muscle development :
myostatin expression transiently increases during atro-
phy due to muscle unloading in adult mice, but no close
relation between atrophy degree and myostatin expres-
sion has been found [5]. Interestingly a correlation is
present between myostatin and myosin heavy chain 2B
expression [5]: expression of 2B myosin heavy chain
isoform increases when mechanical activity is reduced
[32]. In a recent study [10] single nucleotide polymor-
phisms have been reported in the highly conserved exon
2 of the human myostatin gene. Attempts to find corre-
lations with muscle mass in the carriers of these poly-
morphisms have failed. Further work is necessary to
fully understand whether myostatin can act as a regula-
tor of muscle mass and specifically of muscle fibre
number in adult muscle. The action of myostatin on sat-
ellite cells should be an important target of future work.
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