ONGOING PROJECTS IN THE GROUP

Leveraging basic knowledge of ion channel network in cancer for innovative therapeutic strategies

PRIN 2017, National coordinator: Prof. Annarosa Arcangeli (Firenze), local PIs : Michael Pusch (CNR Genova), Desaphy Jean-Francois (Univ. Bari), Ranieri Danilo (La Sapienza, Roma), Munaron Luca Maria (Univ. Torino), Ildiko Szabo (Univ. Padova)

The project proposes to leverage the knowledge of ion channel biology and of the mechanisms underlying their networking in cancer cells, to design an innovative, ion channel-centered, therapeutic strategy. In particular, starting from recent evidence pointing ion channels as pivotal regulators of different cancer hallmarks, the project wants to define the physical and functional interactions between different ion channels either on the plasma membrane or on intracellular organelles, as well as the cross talk between ion channels and growth factor/adhesion receptors. Besides the advancement in scientific knowledge, the attainment of this goal is expected to produce results whose main application potentialities are (1) the identification of new diagnostic and/or prognostic biomarkers and (2) the preclinical identification of novel therapeutic options (repurposing of drugs ready for future human studies and/or identification of novel candidate drugs ready for preclinical toxicological and pharmacokinetics studies).

 

Mitochondria-targeted drugs against poor-prognosis cancers

PI: ILDIKÓ SZABÓ, AIRC (Italian Association for Cancer Research)

The AIRC project aims to exploit ion channel modulators against cancer. Ion channels are emerging as promising oncological targets. We are studying some of the mitochondrial channels in order to selectively trigger apoptosis of cancer cells, by modulating these proteins. We are investigating the effect of novel channel modulators and characterize their effects in vitro and in vivo, dedicating special attention to tumor growth, tumor microenvironment, possible side effects and combined therapies in mouse models for melanoma, pancreatic cancer, breast cancer and lymphocytic leukemia.



Towards elimination of pathologic autoimmune cells in multiple sclerosis

PI: ILDIKÓ SZABÓ, AIMS (Italian Association for Multiple Sclerosis)

Specific ion channels play a crucial role in the regulation of immune cells. In particular, an altered expression and function of a potassium channel has been linked to the development of various autoimmune diseases. The AISM projact aims to selectively eliminate pathologic T cells by pharmacological modulation of some potassium channels in the setting of multiple sclerosis. We are investigating the  effects of channel modulators in patients' cells and in a mouse model of MS.

OPEN 2-YEAR POSTDOC POSITION - deadline 15th of April (please contact Prof. I. Szabo, ildiko.szabo@unipd.it)




Small molecules against mitochondrial diseases

PI: ILDIKÓ SZABÓ, TELETHON

The Telethon project focuses on mitochondrial diseases. In particular, we study pathologies linked to deficit of respiratory chain complexes that are still incurable. We are investigating the in vitro and in vivo effect of some small molecules with redox activity in cells of patients as well as in genetic Drosophila, zebrafish and mouse models.



Mitochondria and WNT signaling

PI: LUIGI LEANZA, My First AIRC Grant 2019

Mitochondria are important organelles for cellular respiration as well as for the regulation of differentiation, apoptosis, cell growth and cell cycle. Targeting mitochondrial metabolism by disrupting mitochondrial fitness and triggering cell death exclusively in cancer cells has become a promising strategy against cancer. Mitochondria are closely interconnected with the Endoplasmic Reticulum (ER). Our group is studying the modulation of Mitochondria-ER contact sites' length and the distance between the two organelles the impact on their function and on cellular signaling.




A voltage-dependent potassium channel in myeloid cells and inflammation

PI: TATIANA VARANITA, STARS (Supporting TAlents in ReSearch) project of the University of Padova

Despite the importance of ion channels for critical signaling pathways, their in vivo function in the immune system still need to be defined. A potassium channel is expressed in hematopoietic cell, but whether it has a relevant role to the processes of the innate immunity is largely unknown. Given that potassium channels are druggable targets, the findings of this project could stimulate novel potential strategies for the treatment of chronic inflammatory diseases and sepsis.

RECENTLY COMPLETED PROJECTS

PRIN (Italian Ministry) 2015-2019 - Interfacing organelles and cell physiology via ion channels: from biophysics to therapy 

National coordinator: Ildiko' Szabo'
Local coordinators:
Prof. Vito De Pinto (University of Catania); Prof. Anna Moroni (University of Milan); Prof. Matteo Ceccarelli (University of Cagliari); Prof. Armando Carpaneto (University/CNR of Genova)

Published papers from the project

Unit 1 (UniPD):
1) Bachmann M, Pontarin G, Szabo I. The Contribution of Mitochondrial Ion Channels to Cancer Development and Progression. Cell Physiol Biochem. 2019;53(S1):63-78.
2) Paggio A, Checchetto V, Campo A, Menabň R, Di Marco G, Di Lisa F, Szabo I, Rizzuto R, De Stefani D. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019 Aug;572(7771):609-613.
3) Costa R, Peruzzo R, Bachmann M, Montŕ GD, Vicario M, Santinon G, Mattarei A, Moro E, Quintana-Cabrera R, Scorrano L, Zeviani M, Vallese F, Zoratti M, Paradisi C, Argenton F, Brini M, Calě T, Dupont S, Szabň I, Leanza L.Impaired Mitochondrial ATP Production Downregulates Wnt Signaling via ER Stress Induction. Cell Rep. 2019 Aug 20;28(8):1949-1956.
4) Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I.Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol. 2019 Nov;176(22):4258-4283.
5) Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, McMillan DGG, Gerle C, Szabň I, Bernardi P.Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nature Commun. 2019 Sep 25;10(1):4341.
6) Leanza L, Romio M, Becker KA, Azzolini M, Trentin L, Managň A, Venturini E, Zaccagnino A, Mattarei A, Carraretto L, Urbani A, Kadow S, Biasutto L, Martini V, Severin F, Peruzzo R, Trimarco V, Egberts JH, Hauser C, Visentin A, Semenzato G, Kalthoff H, Zoratti M, Gulbins E, Paradisi C, Szabo I. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. Cancer Cell. 2017 Apr 10;31(4):516-531.e10.

UNIT 2 (UniMi):
1: Alberio L, Locarno A, Saponaro A, Romano E, Bercier V, Albadri S, Simeoni F,
Moleri S, Pelucchi S, Porro A, Marcello E, Barsotti N, Kukovetz K, Boender AJ,
Contestabile A, Luo S, Moutal A, Ji Y, Romani G, Beltrame M, Del Bene F, Di Luca
M, Khanna R, Colecraft HM, Pasqualetti M, Thiel G, Tonini R, Moroni A. A light-gated potassium channel for sustained neuronal inhibition. Nature Methods. 2018 Nov;15(11):969-976.
2: Cosentino C, Alberio L, Thiel G, Moroni A. Yeast-Based Screening System for the Selection of Functional Light-Driven K+Channels. Methods Mol Biol. 2017;1596:271-285.
3: Saponaro A, Porro A, Chaves-Sanjuan A, Nardini M, Rauh O, Thiel G, Moroni A.
Fusicoccin Activates KAT1 Channels by Stabilizing Their Interaction with 14-3-3
Proteins. Plant Cell. 2017 Oct;29(10):2570-2580.
4: Eckert D, Schulze T, Stahl J, Rauh O, Van Etten JL, Hertel B, Schroeder I,
Moroni A, Thiel G. A small viral potassium ion channel with an inherent inward
rectification. Channels (Austin). 2019 Dec;13(1):124-135.
5: Rauh O, Urban M, Henkes LM, Winterstein T, Greiner T, Van Etten JL, Moroni A,
Kast SM, Thiel G, Schroeder I. Identification of Intrahelical Bifurcated H-Bonds
as a New Type of Gate in K+ Channels. J Am Chem Soc. 2017 Jun 7;139(22):7494-7503.
6: Baumeister D, Hertel B, Schroeder I, Gazzarrini S, Kast SM, Van Etten JL, Moroni A, Thiel G. Conversion of an instantaneous activating K+ channel into a slow activating inward rectifier. FEBS Lett. 2017 Jan;591(2):295-303.
7: Winterstein LM, Kukovetz K, Rauh O, Turman DL, Braun C, Moroni A, Schroeder
I, Thiel G. Reconstitution and functional characterization of ion channels from
nanodiscs in lipid bilayers. J Gen Physiol. 2018 Apr 2;150(4):637-646.

UNIT 3 (CNR Genova):
1) Bregante M*, Carpaneto A*, Piazza V, Sbrana F, Vassalli M, Faimali M, Gambale F. Osmoregulated Chloride Currents in Hemocytes from Mytilus galloprovincialis. PLoS One (2016) 11(12):e0167972.
2) Lagostena L, Festa M, Pusch M, Carpaneto A. The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Sci Rep. (2017) 7:43900.
3) Trost P, Picco C, Scholz-Starke J, Festa M, Lagostena L, Costa A, Sparla F, Carpaneto A. Electron current recordings in living cells. Biophys Chem (2017) 229:57-61.
4) Carpaneto A, Boccaccio A, Lagostena L, Di Zanni E, Scholz-Starke J. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ exchange activity. EMBO Rep (2017) 18(7):1100-1107.
5) Pafumi I, Festa M, Papacci F, Lagostena L, Giunta C, Gutla V, Cornara L, Favia A, Palombi F, Gambale F, Filippini A, Carpaneto A. Naringenin Impairs Two-Pore Channel 2 Activity And Inhibits VEGF-Induced Angiogenesis. Sci Rep (2017) 7(1):5121.
6) Carpaneto A, Gradogna A. Modulation of calcium and potassium permeation in plant TPC channels. Biophys Chem (2018) 236:1-7.
7) Kirsch SA, Kugemann A, Carpaneto A, Böckmann RA, Dietrich P. Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cell Mol Life Sci (2018) 75(20):3803-3815.
8) Böhm J, Messerer M, Müller HM, Scholz-Starke J, Gradogna A, Scherzer S, Maierhofer T, Bazihizina N, Zhang H, Stigloher C, Ache P, Al-Rasheid KAS, Mayer KFX, Shabala S, Carpaneto A, Haberer G, Zhu JK, Hedrich R. Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Curr Biol (2018) 28(19):3075-3085.e7.
9) Benkerrou D, Minicozzi V, Gradogna A, Milenkovic S, Bodrenko IV, Festa M, Lagostena L, Cornara L, D'Amore A, Ceccarelli M, Filippini A, Carpaneto A. A perspective on the modulation of plant and animal two pore channels (TPCs) by the flavonoid naringenin. Biophys Chem (2019) 254:106246.
10) Milenkovic S , Bodrenko IV , Lagostena L , Gradogna A , Serra G , Bosin A , Carpaneto A, Ceccarelli M. The mechanism and energetics of a ligand-controlled hydrophobic gate in a mammalian two pore channel. Phys Chem Chem Phys (2020) 22(27):15664-15674.

UNIT 4 (UniCa):
1. Guardiani, C. et al. yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. Biochim Biophys Acta 1859, 270–279 (2018).
2.De Pinto, Matteo Ceccarelli, Mariano Andrea Scorciapino, G. M. I. S. A. M. M. C. V. et al. Folded Structure and Membrane Affinity of the N‐Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage- Dependent Anion-Selective Channel. ACS Omega 3, 11415–11425 (2018).
3. Vergalli, J. et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Micro 33, 1831–13 (2019).
4. Coines, J., Acosta-Gutierrez, S., Bodrenko, I., Rovira, C. & Ceccarelli, M. Glucose transport via the pseudomonad porin OprB: implications for the design of Trojan Horse anti-infectives. Phys Chem Chem Phys 14, 529–8463 (2019).
5. Bodrenko, I. V., Salis, S., Acosta-Gutierrez, S. & Ceccarelli, M. Diffusion of large particles through small pores: From entropic to enthalpic transport. J Chem Phys 150, 211102 (2019).
6. Moynié, L. et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nature Communications 10, 3673 (2019).
7. Benkerrou, D. et al. A perspective on the modulation of plant and animal two pore channels (TPCs) by the flavonoid naringenin. Biophys Chem 254, 106246 (2019).
8. Bafna, J. A. et al. Kanamycin Uptake into Escherichia coli Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infect. Dis. acsinfecdis.0c00102 (2020). doi:10.1021/acsinfecdis.0c00102
9. Milenkovic, S. et al. The mechanism and energetics of a ligand-controlled hydrophobic gate in a mammalian two pore channel. Phys Chem Chem Phys 2004, re15–11 (2020).

UNIT 5 (UniCT):
1) Magrě A, Di Rosa MC, Orlandi I, Guarino F, Reina S, Guarnaccia M, Morello G, Spampinato A, Cavallaro S, Messina A, Vai M and De Pinto V. Deletion of Voltage-Dependent Anion Channel 1 knocks mitochondria down triggering metabolic rewiring in yeast (2019), Cell Mol Life Sci. doi: 10.1007/s00018-019-03342-8
2) Pittalŕ MGG, Saletti R, Reina S, Cunsolo V, De Pinto V, Foti S. A High Resolution Mass Spectrometry Study Reveals the Potential of Disulfide Formation in Human Mitochondrial Voltage-Dependent Anion Selective Channel Isoforms (hVDACs). Int J Mol Sci. 2020 Feb 21;21(4):1468.
3) Magrě A, Karachitos A, Di Rosa MC, Reina S, Conti Nibali S, Messina A, Kmita H, De Pinto V. Recombinant yeast VDAC2: a comparison of electrophysiological features with the native form. FEBS Open Bio. 2019 Jul;9(7):1184-1193.
4) Saletti R, Reina S, Pittalŕ MGG, Magrě A, Cunsolo V, Foti S, De Pinto V. Post-translational modifications of VDAC1 and VDAC2 cysteines from rat liver mitochondria. Biochim Biophys Acta 1859 (2018) 806–816.
5) Magrě A, Reina S, De Pinto V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front Chem. 2018 6, 108.
6) Guardiani C, Magrě A, Karachitos A, Di Rosa MC, Reina S, Bodrenko I, Messina A, Kmita H, Ceccarelli M, De Pinto V. yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. Biochim Biophys Acta. 2018 1859, 4, 270-279.
7) Reina S, De Pinto V. Anti-Cancer Compounds Targeted to VDAC: Potential and Perspectives. Curr Med Chem. 2017 24, 40, 4447-4469.
8) Saletti R, Cunsolo V, Messina A, De Pinto V, Foti S. High resolution mass spectrometry characterization of the oxidation pattern of methionine and cysteine residues in rat liver mitochondria voltage-dependent anion selective channel 3 (VDAC3). Biochim Biophys Acta. 2017 1859, 301-311.
9) Reina S, Guarino F, Magrě A, De Pinto V. VDAC3 as a potential marker of mitochondrial status is involved in cancer and pathology. Front. Oncol., 2016, 6, 264.
10) De Pinto V, Reina S, Gupta A, Messina A, Mahalakshmi R. Role of cysteines in mammalian VDAC isoforms' function. Biochim Biophys Acta. 2016, 1857, 789-798. 



Human Frontiers Science Program (2015-2019)

Coordinator: ILDIKÓ SZABÓ. Partners: Giovanni Finazzi (Grenoble, France); Toshiharu Shikanai (Kyoto, Japan); Chris Chang (Berkeley, USA)

Published papers from the project

Carraretto L., Teardo E., Checchetto V., Finazzi G.*, Uozumi N.*, Szabň I.* (2016) Ion channels in plant bioenergetic organelles, chloroplasts and mitochondria: from molecular identification to function. Molecular plant, mar 7; 9(3): 371-395

Spetea C., Herdean A., Allorent G., Carraretto L., Finazzi G., Szabň I.* (2017) An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis. Physiologia plantarum, mar 23. doi: 10.1111/ppl.12568

Wang C., Yamamoto H., Narumiya F., Munekage Y. N., Finazzi G., Szabň I., Shikanai T.* (2017) Fine-tuned regulation of the K(+) /H(+) antiporter KEA3 is required to optimize photosynthesis during induction. Plant Journal  Feb; 89 (3): 540-553

Allorent G., Byrdin M., Carraretto L., Morosinotto T., Szabň I.*, Finazzi G.* (2018) Global spectroscopic analysis to study the regulation of the photosynthetic proton motive force: a critical reappraisal. Biochimica et  Biophysica Acta Bioenergetics, 1859: 676-683

De Bortoli S., Teardo E., Szabň I., Morosinotto T., Alboresi A. (2016) Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophysical chemistry, nov; 218: 14-26

Sello S., Perotto J., Carraretto L., Szabň I., Vothknecht U. C., Navazio L. (2016) Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures. Journal of  Experimental Botany, jun; 67 (13): 3965-74

Checchetto V., Teardo E., Carraretto L., Leanza L., Szabo I.* (2016) Physiology of intracellular potassium channels: a unifying role as mediators of counterion fluxes? Biochimica et Biophysica Acta, aug;1857 (8): 1258-1266

Carraretto L., Checchetto V., De Bortoli S., Formentin E., Costa A., Szabó I.*, Teardo E.* (2016) Calcium flux across plant mitochondrial membranes: possible molecular players. Frontiers in Plant Sciences, mar 31; 7: 354

Checchetto V., Segalla A., Sato Y., Bergantino E., Szabo I.*, Uozumi N. (2016) Involvement  of potassium transport systems in the response of Synechocystis PCC 6803 cyanobacteria to external pH hhange, high-intensity light stress and heavy metal  stress. Plant & Cell Physiology, apr; 57 (4): 862-77

Herdean A., Teardo E., Nilsson A. K., Pfeil B. E., Johansson O. N., Ünnep R., Nagy G., Zsiros O., Dana S., Solymosi K., Garab G., Szabó I., Spetea C., Lundin B. (2016) A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nature Communications, may 24; 7: 11654

Szabo I.*, Spetea C.* (2017) Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. Journal of Experimental  Botany, mar 13. doi: 10.1093/jxb/erx063

Spetea C., Szabň I., Kunz H. H. (2017) Editorial: ion transport in chloroplast and mitochondria physiology in green organisms. Frontiers in Plant Sciences, jan 5; 7: 2003

Teardo E., Carraretto L., Wagner S., Formentin E., Behera S., De Bortoli S., Larosa  V., Fuchs P., Lo Schiavo F., Raffaello A., Rizzuto R., Costa A., Schwarzländer M., Szabň I.* (2017) Physiological characterization of a plant mitochondrial calcium uniporter in vitro and in vivo. Plant physiology, feb; 173 (2): 1355-1370

Costa A., Navazio L., Szabo I.* (2018) The contribution of organelles to plant intracellular calcium signalling. Journal of Experimental Botany

Sello S., Moscatiello R., Mehlmer N., Leonardelli M., Carraretto L., Cortese E., Zanella F. G., Baldan B., Szabň I., Vothknecht U. C., Navazio L. (2018) Chloroplast Ca(2+) fluxes into and across thylakoids revealed by thylakoid-targeted aequorin probes. Plant physiology, may; 177 (1): 38-51

Larosa V., Meneghesso A., La Rocca N., Steinbeck J., Hippler M., Szabň I., Morosinotto T. (2018) Mitochondria affect photosynthetic electron transport and photosensitivity in a green alga. Plant physiology, mar; 176 (3): 2305-2314

Urbani A., Giorgio V., Carrer A., Franchin C., Arrigoni G., Jiko C., Abe K., Maeda S., Shinzawa-Itoh K., Bogers J. F. M., McMillan D. G. G., Gerle C.* Szabň I.*, Bernardi P.* (2019) Purified F-ATP synthase forms a Ca(2+)-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nature communications, sep 25; 10 (1): 4341

Teardo E.+, Carraretto L.+, Moscatiello R., Cortese E., Vicario M., Festa M., Maso L.,  De Bortoli S., Calě T., Vothknecht U. C., Formentin E., Cendron L., Navazio L.*, Szabň I.* (2019) A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nature plants, jun; 5 (6): 581-588 (+Authors sharing first authorship)

Shikanai T., Yamamoto H. (2017) Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Molecular plant 10, 20-29

Kato Y., Sugimoto K., Shikanai T. (2018) NDH-PSI supercomplex assembly precedes full assembly of the NDH complex in chloroplast. Plant physiology, 176, 1728-1738

Otani T., Kato Y., Shikanai T. (2018) Specific substitutions of light-harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase-like complex. Plant journal 94, 122-130

Wang C., Takahashi H., Shikanai T. (2018) PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts. Biochimica et Biophysica Acta Bioenergetics 1859, 1173-1179

Kato Y., Odahara M., Fukao Y., Shikanai T. (2018) Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase-like complex: Lhca5-dependent supercomplex formation in Physcomitrella patens. Plant journal 96, 937-948

Nakano H., Yamamoto H., Shikanai T. (2019) Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. Biochimica et Biophysica Acta Bioenergetics 1860, 369-374

Wang C., Shikanai T. (2019) Modification of activity of the thylakoid H+/K+ antiporter KEA3 disturbs ∆pH-dependent regulation of photosynthesis. Plant physiology, doi: 10.1104/pp.19.00766

Petroutsos D., Tokutsu R., Maruyama S., Flori S., Greiner A., Magneschi L., Cusant L., Kottke T., Mittag M., Hegemann P., Finazzi G.*, Minagawa J.* (2016) A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature 537: 563-566

Curien G., Flori S., Villanova V., Magneschi L., Giustini C., Forti G., Matringe M., Petroutsos D., Kuntz M., Finazzi G.* (2016) The water to water cycles in microalgae. Plant & Cell Physiology, jul; 57 (7): 1354-1363

Flori S., Jouneau P. H., Bailleul B., Gallet B., Estrozi L. F., Moriscot C., Bastien O., Eicke S., Schober A., Bártulos C. R., Maréchal E., Kroth P. G., Petroutsos D., Zeeman S., Breyton C., Schoehn G., Falconet D., Finazzi G.* (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nature communications 8: 15885

Villanova V., Fortunato A. E., Singh D., Dal Bo D., Conte M., Obata T., Jouhet J., Fernie A. R., Marechal E., Falciatore A., Pagliardini J., Le Monnier A., Poolman M., Curien G., Petroutsos G., Finazzi G.* (2017) Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Phil. Trans. R. Soc. B 20160404

Taddei L., Chukhutsina V. U., Lepetit B., Stella G. R., Bassi R., Van Amerongen H., Bouly J. P., Jaubert M., Finazzi G., Falciatore A. (2018) Dynamic changes between two LHCX-related energy quenching sites control diatom photoacclimation. Plant physiology 177: 953-965

Allorent G., Guglielmino E., Giustini C., Courtois F. (2018) Generation of mutants of nuclear-encoded plastid proteins using CRISPR/Cas9 in the diatom Phaeodactylum tricornutum. Methods Molecular Biology 1829: 367-378

Pralon T., Shanmugabalaji V., Longoni P., Glauser G., Ksas B., Collombat J., Desmeules S., Havaux M., Finazzi G., Kessler F. (2019) Plastoquinone homoeostasis by Arabidopsis proton gradient regulation 6 is essential for photosynthetic efficiency. Communications biology 2019, 2: 220

Decelle J., Stryhanyuk H., Gallet B., Veronesi G., Schmidt M., Balzano S., Marro S., Uwizeye C., Jouneau P. H., Lupette J., Jouhet J., Maréchal E., Schwab Y., Schieber N. L., Tucoulou R., Richnow H., Finazzi G., Musat N. (2019) Algal remodeling in an ubiquitous planktonic photosymbiosis. Current biology 29: 968-978

 

Cation homeostasis in chloroplasts and intracellular signaling (2018-2019)


PI: LUCA CARRARETTO, STARS (Supporting TAlents in ReSearch) project of the University of Padova

The principal objects of the project were to start to better elucidate the role of plastidial ion channels and their involvement and regulation during stress response and acclimation of plants/cells. The search for the link between ion channels of plant bioenergetic organelles and the response of plants to environmental stresses is still a pioneering branch in plant physiology, but the knowledge already acquired till now is very promising. The better understanding of plant response mechanisms will open new paths in the research to increase resistance to stress and, therefore, greater plant productivity, useful for food and industrial purposes.

Published papers from the project

Teardo E.*, Carraretto L.*, Moscatiello R., Cortese E., Vicario M., Festa M., Maso L.,  De Bortoli S., Calě T., Vothknecht U. C., Formentin E.+, Cendron L., Navazio L.+, Szabň I.+ (2019) A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nature plants, jun; 5 (6): 581-588 (* sharing first authorship) (+ co-corresponding authors)