Regeneration of the long term denervated human muscle

Ugo Carraro

Translational Myology Lab of the Interdepartmental Research Center of Myology, Department of Biomedical Science, University of Padua, Italy.
E-mail: ugo.carraro@unipd.it

Abstract

Light and electron microscopy and antibody for embryonic myosin show that myogenic regenerative events are present in human muscle up to 37-year post-spinal cord injury. After 5 years of Functional Electrical Stimulation (FES) in the recovered muscles regenerative events are present, but at a lower rate than in long-term denervated muscles. We conclude that the FES-training of paraplegic subjects is safe (it does not induce more muscle damage/regeneration than denervation per se) and effective (the mean size of the myofibers went from 15.4 to 27.0, that is, a 76% increase after two years of FES).

Key Words: human muscle, permanent denervation of the lower extremity, FES, muscle recovery, prevention of secondary diseases.

Basic Appl Myol 16 (3&4): 102-104, 2006

Morphologic characteristics of the long-term denervated muscle in animals suggest that some original fibers are lost and some of those seen are the result of repeated cycles of fiber regeneration (Figure 1 and 2). Muscle biopsies from lower motoneuron denervated spinal cord injury (SCI) patients enrolled in the EU Project RISE show the characteristics of long-term denervation. They present a few atrophic or severely atrophic myofibers dispersed among adipocytes and connective tissue (denervated degenerated muscle, DDM), while after 2- to 10-year FES-training the muscle cryosections present mainly large round myofibers. Monoclonal antibody for embryonic myosin shows that regenerative events are present from 1- to 37-year post-SCI (Figure 3).

In the FES-trained muscles the regenerative events are present, but at a lower rate than long-term denervated muscles (myofiber per mm2 of cryosection area: 0.8+/−1.3 in FES vs. 2.3+/−2.3 in DDM, mean+/−SEM, p = 0.011).

Figure 1. Hematoxylin-eosin staining of denervated (A) and aneurally regenerated rat muscle (B). Note the incremental size of the fibers and the presence of central nuclei in myofiber of a 1-month regenerated muscle in the permanent absence of the nerve (A). B shows that spontaneous regeneration is also present in a 1-month denervated muscle, as demonstrated by the central nucleus in several muscle fibers.
Figure 2. Double exposure anti-MHCemb (green) & Hoechst (blue staining for nuclei) under bright-field illumination at contrast phase. A, 30 days denervated muscle showing a myofiber with central nucleus positive for MHCemb; B, 30 days aneurally regenerated muscle with some still positive myofibers for MHCemb.

Muscle biopsies from lower motoneuron denervated patients enrolled in the EU Project RISE show the characteristics of long-term denervation. They present a few atrophic or severely atrophic myofibers dispersed among adipocytes and connective tissue (denervated degenerated muscle, DDM). Monoclonal antibody for embryonic myosin shows that regenerative events are present from 1- to 37-year post-spinal cord injury (SCI). After 2- to 10-year FES-training the muscle cryosections present mainly large round myofibers (not shown).

In the FES-trained muscles the regenerative events are present, but at a lower rate than long-term denervated muscles (myofiber per mm2 of cryosection area: 0.8 +/- 1.3 in FES vs. 2.3 +/- 2.3 in DDM, mean +/- SEM, p = 0.011).

In our opinion this is a sound additional evidence of safety of the Kern’s electrical stimulation protocol for FES of DDM. The results demonstrate that FES-training is safe: indeed it does not induce more myofiber damage/regeneration than denervation per se.

We conclude that the FES-training of paraplegic subjects is safe (it does not induce more muscle damage/regeneration than denervation per se) and effective (the mean size of the myofibers went from 15.4 to 27.0, that is, a 76% increase after two years of FES).

Figure 3. Long-term Denervated Human Muscle. Lower Motor Neuron Lesion. The anti-MHCemb positive fibers (green) are myofibers regenerated during the last two weeks before biopsy harvesting.
Figure 4. FES of Long-term Denervated Human Muscle. RISE Project - Preliminary results.

Acknowledgements

This research was undertaken with the financial support of EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191).

References


